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Abstract: Silver nanoparticles are one of the most exploited metal nanoparticles due to their
unique properties. They are synthesized via chemogenic and biogenic routes. Their widespread
applications have resulted in their unintentional release into various environmental matrices,
ultimately making way to the aquatic environment. Silver nanoparticles have a broad-spectrum
antimicrobial efficacy, which coupled with their increasing concentration in the environment has
raised concerns about their safety and ecotoxicity. Fishes are most likely to be affected in aquatic
ecosystems. Studies have reported toxic effects of silver nanoparticles in different fishes at various
levels of organisation i.e. haematological, histological and biochemical level. This review aims to
summarize all the available information on biological effects and establish an understanding of
the toxicity mechanism of silver nanoparticles to illuminate associated potential risks and safety.
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INTRODUCTION

Nanoparticles are wide class of materials having
at least one dimension between 1 and 100 nm.
Based on different shapes, nanoparticles can
have up to three dimensions. Nanoparticles can
be uniform or may comprise the following layers:
(1) the surface layer, the outer most layer of
nanoparticles, which generally consists of very
small size molecules, metal ions or polymers, (2)
shell layer, which is of different chemical
composition than the core, (3) core layer, centre of

the nanoparticles (Joudeh and Linke, 2022). The
large surface area to volume ratio amplifies their
reactivity and efficiency in catalytic reactions
and shows significant anti-microbial potential
even at low concentrations, making them suitable
for several biomedical applications like drug
delivery, medical imagingetc. (Yinetal.., 2020).

Among all the nanoparticles synthesised and
characterised so far, silver nanoparticles (AgNPs)
are the most significant ones due to their potential
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applications in commercial uses. They are
typically composed of 20-15,000 silver atoms.
AgNPs are widely known for their anti-microbial
activities, which makes them very useful in
nanomedicine for wound healings, drug delivery
as anti-microbial coatings in textiles, biomedical
devices and treatment (Pachaiappan et al., 2023;
Ramanayakaetal., 2023).

Due to their broad-spectrum antimicrobial and
remediation properties, AgNPs have diverse
applications in medicine, textiles, agriculture,
food storage, and environmental remediation
(Biswas et al., 2024). Extensive use of AgNPs
results in their release into the aquatic
environment leading to nanopollution, which
raises ecotoxicological concerns owing to its
harmful effects on aquatic organisms (Rai and
Biswas, 2018; Auclair et al., 2019; Biswas and
Sarkar, 2019). The predicted environmental
concentrations of AgNPs in water might reach
from pg/L to mg/L range (Wang et al., 2022), which
are considered to be toxic in any environmental
setting (Kiithretal., 2018).

Silver can occur in four oxidation states (Ag, Ag’,
Ag"", and Ag’") in aquatic environment (Ibrahim,
2020). Although, the exact mechanism of AgNPs
toxicity is still not well understood due to lack of
information, it is believed that the toxicity of
AgNPs is caused due to release of silver ions from
the nanoparticles upon entering into the
environment and its absorption by living
organisms (Rai et al., 2018; Caceres-Vélez et al.,
2019). AgNPs can react with ions, ligands and
colloids present in aqueous solution depending
on the environmental conditions. Hence, AgNPs
can end up in the environment and pose serious
threat to the exposed organisms (Biswas et al.,
2018). Because of the broad-spectrum efficacy of
AgNPs as antibacterial agent, they can cause
toxicity to non-target aquatic and soil organisms
(Weietal., 2023).

Fishes occupy an important position in aquatic
food chain. The amniotes i.e. reptiles, birds,
mammals including human beings consume
fishes as a source of protein (Verma, 2017; Verma
and Prakash, 2020). If the nanoparticle in
question exhibits any toxicity to fishes, there is a

high chance of transmitting that toxicity along the
food chain (Roy and Nath, 2022). Many studies
report the toxic effects of chemically synthesized
nanoparticles (Younas et al., 2022). Exposure to
higher levels of AgNPs results in different degrees
of toxic manifestation in fishes in the form of
inflammation, metabolic stress, immune
suppression, biochemical disturbance, and
growth depression which depends on the
concentration, duration of exposure and size of
the nanoparticles (Hedayati et al., 2019; Mabrouk
et al.,, 2021). Chemically synthesized AgNPs can
inhibit acetylcholine esterase (AChE), impair T
lymphocytes recruitment, cause imbalance in
blood plasma potassium and chloride level and
increase cortisol level in fish exposed to
nanoparticles (Bandeira et al., 2020). Other
studies also report histopathological changes in
gill epidermis, liver and kidney of fish (Younas et
al., 2022).

Numerous studies have reported the toxic effect of
AgNPs on fish but still there is a lack of proper and
systematic information about the nature and fate
of AgNPs in the environment and its implication
on toxicity. This review article will outline the
toxic effects of AgNPs in fishes at different
organisational levels, such as haematological,
histological and biochemical level.

RELEASE OF SILVER NANOPARTICLES INTO

THE ENVIRONMENT
Although AgNPs may occur naturally, but their

over exploitation has played a significant role
behind its growing concentration in the
environment. AgNPs are one of the most exploited
nanoparticles due to its unique anti-microbial
potential. Their increasing production with the
current rate of 500 ton per year, and widespread
industrial uses have raised the chances of
environmental contamination in general, and the
aquatic environment, the inevitable destination,
in particular (Ihtisham et al., 2021).

AgNPs are used in nano-coating of textiles,
personal care products, medical devices, food
containers, cosmetic products, paints and nano-
functionalised plastics etc. (McGillicuddy et al.,
2017; Rai and Biswas, 2018; Biswas et al., 2024).
Their broad-spectrum antimicrobial nature can
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make it harmful for non-target soil and aquatic
living organisms. Release of AgNPs into the
environment can take place through direct or
indirect mode. Direct release includes aerial
deposition, sewage discharges from industrial
facilities and household areas into water bodies,
accidental spills during manufacturing and
transport etc. and indirect release are discharges
from organic, inorganic fertilizers and engineered
plant growth substances used as fertilizer
substitutes. In both the cases AgNPs can be
accumulated in soil and underground water.
Despite these facts, AgNPs are still used in more
than 250 consumer products around the world.
Globally, the AgNPs market size has expanded
from $2.20 million to $2.42 million within 2021-
2022 time periods, with growth rate of
approximately 16% anticipated for the period of
2023-2028 (Noori et al.,, 2024). They ultimately
enter water bodies through sewage discharge,
atmospheric dry and wet deposition, and waste
leachate (Forstner et al., 2020).

The generation of AgNPs in United States is
reported to be up to 2,500 ton per year from which
approximately 150 ton is released in sewage
sludge and 80 ton in surface waters (Tripathi et al.,
2017). In terms of their concentrations in different
environmental sectors, studies have reported
presence of AgNPs (in European Union) in
sediments ranging from 0.19 to 470.6 pg/kg and in
surface water 0.03-2.79 ng/L (Giese et al., 2018).
Dumont et al. (2015) reported the AgNPs
concentrations of 0.3 ng/L in rivers in large
southern European cities and Xiao et al. (2019)
reported that silver nanoparticles concentrations
in Taihu Lake reached 0.77 ng/L.

The concentrations of AgNPs throughout Waste
Water Treatment Plants were estimated to be in
the range of pg/L to ng/L, and most of their sizes
belonged to below 100 nm category (Cervantes-
Avilés et al., 2019). The present day predicted
environmental concentrations of AgNPs in water
might reach levels in the pg/L range and, in some
cases, even mg/L range (Wang et al., 2022). These
estimates underscore the potential presence and
implications of AgNPs in aquatic ecosystems.

FATE OF SILVER NANOPARTICLES IN THE
ENVIRONMENT
As the aquatic ecosystem is inevitably the final

destination for AgNPs, their fate is influenced by
factors like water salinity, dissolved organic
matter, and the presence of other ions. AgNPs can
stay in suspension or undergo dissolution,
oxidation, and adsorption upon entering in
aquatic environment. In freshwater, AgNPs tend
to remain stable due to dissolved organic matter,
while in highly saline waters, they tend to
aggregate and dissolve more readily (Li et al.,
2020).

In natural water AgNPs may be transformed
through several ways which include oxidative
dissolution, chlorination, and sulfidation. The
silver ions (Ag") released from AgNPs can also be
reduced under certain conditions to produce new
silver nanoparticles (Zhanget al., 2018). Zhang et
al. (2016) in a study outlined that the physico-
chemical behaviour of AgNPs in the aquatic
environment is of complex nature and there
remains a knowledge gap regarding the kinetics
of nanoparticles dissolution. They also
mentioned that the assumptions regarding Gibbs
free energy of formation of AgNPs in aquatic
ecosystems and release of silver ions (Ag")
through dissolution of AgNPs doesn't fully
describe their actual fate. The transformation of
AgNPs in wastewater is comparatively
homogenous, because most of the silver
nanoparticles enter the wastewater streams after
being transformed into sulfides (Zhao et al,
2021).

TOXICITY OF SILVER NANOPARTICLES IN
FISH

Silver nanoparticles act as a double-edged sword
with both beneficial and harmful effects. They are
known for their broad-spectrum efficacy as anti-
microbial agent, but concern about their safety is
raised when non-target organisms are subjected to
its increasing concentrations (Liao et al., 2019;
Ghoshetal., 2025). Once AgNPs enter into aquatic
environment, they usually oxidize into silver ions
(Ag"), which are significantly toxic to aquatic
organisms such as fish. (Galazzi et al., 2019).
Determining the toxic effect of AgNPs on fish is



152 // Silver Nanoparticles in the Aquatic Environment

Antima Mitra et al., IJBI 7 (2): 2025

crucial for assessing their ecological impact.
Numerous studies have documented the toxicity
of AgNPs in fish at various levels, including
haematological, biochemical, and histological.
Exposure to silver nanoparticles can cause a range
of adverse effects in fish, affecting their blood
composition, metabolic processes, and tissue
structure (Rajkumar et al., 2016).

Fishes can be exposed to AgNPs through various
routes, including, waterborne exposure, and
dietary exposure (Fig. 1). Uptake of AgNPs by fish

can take place through dietary exposure to algae,
weeds, insects, and worms, which are also
capable of accumulating silver nanoparticles
(Dube and Okuthe, 2023). Uptake can also take
place through drinking water. Waterborne
exposure occurs when fish are directly exposed to
AgNPs in the water column (Mona et al., 2023).
Kleiven et al. (2018) reported that Salmo salar
gills accumulated high concentration of silver
than the gastrointestinal tract after waterborne
exposure to AgNPs, however, dietary exposure
resulted into the opposite scenario.

Silver nanoparticles: Routes of exposure
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Fig. 1: Routes of exposure and toxic effects of silver nanoparticles on fish.

The toxicity of silver nanoparticles in fishes at
different levels is elaborated below:

1. Toxicity of silver nanoparticles in fish at
haematological level

Once inside a cell, AgNPs interact with various
intracellular components, impacting cellular
processes and potentially leading to toxicity
(Djanaguiraman et al., 2024). A study reported
that AgNPs exhibited a number of toxic effects on
common carp Cyprinus carpio upon exposure.
The red blood cells (RBCs) and white blood cells
(WBCGCs) count differed significantly in respect to
the control (Vali et al,, 2020). Rajkumar et al.
(2016) reported significant alteration in red blood
cells, white blood cells, haemoglobin (Hb) and
total protein level in Labeo rohita upon exposure

to AgNPs. In another study exposure to AgNPs
caused decrease in blood red blood cells, white
blood cells, haemoglobin level and serum total
protein level in Oreochromis niloticus (Ibrahim,
2020). In the adult common molly (Poecilia
sphenops), exposure to AgNPs resulted in
decreased red blood cell and white blood cell
level while, serum total protein concentration
increased (Valietal., 2022).

Another study on AgNPs toxicity in rainbow trout
(Oncorhynchus mykiss) showed similar alteration
in red blood cells (RBCs), white blood cells
(WBCs) and haemoglobin levels in the treated
group (Shabrangharehdasht et al., 2020). Joo et al.
(2018) conducted a detailed study on toxicity of
AgNPs on Oncorhynchus mykiss. The results
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indicated a concentration-dependent increase in
thrombocyte, monocyte, and large lymphocyte
and decrease in white blood cell (neutrophils and
lymphocytes) count in the AgNPs treatments.

Studies have reported that AgNPs can cause
morphological changes in red blood cells and
induce damage to hematopoietic tissue leading to
negative effect to red blood cell count. Upon
entering the bloodstream, AgNPs can generate
reactive oxygen species within the red blood cell
leading to lipid peroxidation, protein oxidation,
and nucleic acid damage, which ultimately
compromises the cell's structure and function
(Vali et al., 2022). Studies have reported that
these nanoparticles can trigger the immune
system in fishes, which is represented as
increased white blood cell count (Bantu et al.,
2017). They can also attach to haemoglobin
molecule, specifically to the heme, tryptophan
and amide residues, potentially disrupting its
structure and function. This interaction can lead
to a conformational change in haemoglobin,
potentially causing it to unfold. Furthermore,
AgNPs can facilitate electron transfer, forming a
charge-transfer complex with haemoglobin-
heme, which can contribute to oxidation. The
interaction is dose and time-dependent (Qian et
al., 2015).

2. Toxicity of silver nanoparticles in fish at
histological level

Silver nanoparticles cause histological damage in
fish tissues, including the gills, liver, and
muscles, leading to various alterations like
hyperplasia, necrosis, and vacuolization
(Ostaszewska et al., 2016). A study reported
histological changes in gill tissues of African
catfish (Clarias garepinus) treated with silver
nanoparticles. The histopathological changes
observed were aneurism, epithelium lifting,
subepithelial edema and hyperplasia of
interlamellar epithelium, curling of secondary
lamellae, necrosis of epithelial cell, hypertrophy
and proliferation of erythrocytes, bifurcation and
fusion of filament, increase in number and size of
mucous cells in gill tissues (Sayed et al., 2020).

Rajkumar et al. (2016) in his study indicated that
the AgNPs-treated Labeo rohita fish groups
exhibited significant alterations in gill tissues,

which include proliferation of bronchial chloride
cells ultimately leading to lamellae fusion and
formation of localized aneurism. The aneurism
increases risk of rupture, which can result in
severe haemorrhage and other complications or
death. Another study reported alterations of gill
tissues in AgNPs treated Cyprinus carpio.
Alteration in the sense of damage, atrophy,
shortening of secondary lamella, degeneration,
and necrosis at different concentrations of AgNPs
were reported (Kakakhel et al., 2021). This study
also clearly observed histological alterations in
intestinal tissues, which include some, shaded
intestinal villi mucosal epithelial cells and
missing of small number of epithelial cells.

Another study demonstrated the formation of
hyperplasia, edema and lifting of the gill
epithelium, and lamellar fusion of the gills, and
hemosiderosis, hemorrhage, hydropic swelling,
and pyknotic nuclei in the liver of Carassius
auratus as a result of silver nanoparticles toxicity
(Abarghoei et al., 2016). Naguib et al. (2020)
reported histopathological changes in liver of
Clarias gariepinus treated with AgNPs, which
include proliferation of hepatocytes, pyknotic
nuclei, infiltrations of inflammatory cells,
melanomacrophages aggregation, cytoplasmic
vacuolation, dilation in the blood vessel, hepatic
necrosis, rupture of the wall of the central vein,
and formation of apoptotic cells in the liver.
Another study reported damage, necrosis and cell
lysis in intestinal villi of Cyprinus carpio treated
with AgNPs (Kakakhel et al., 2021). AgNPs also
caused nephrotoxic effect in zebrafish (Danio
rerio). The study recorded tubular necrosis, cell
damage, loss of epithelial lining, glomerular
shrinkage in the kidney of the treated fishes,
which is evidence of direct cytotoxic effect of
AgNPs (Okuthe and Siguba, 2025).

3. Toxicity of silver nanoparticles in fish at
biochemical level

Silver nanoparticles can significantly impact the
biochemical processes in fish, leading to various
adverse effects like oxidative stress, enzyme
alterations, and changes in immune function.
They can interfere with metabolic pathways,
impair enzymatic activities, and disrupt the
balance of antioxidants, potentially leading to
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tissue damage and reduced fish health. Rajkumar
et al. (2016) reported that tissue-damaging
enzymes like acid phosphatase (ACP) and
alkaline phosphatase (ALP) levels were
significantly higher in the silver nanoparticles-
treated fish tissues of gill, liver and muscle when
compared with control tissues of Labeo rohita.

Another AgNPs toxicity study on Oreochromis
mossambicus reported increased activity of
serum enzymes aspartate transaminase (AST),
alanine transaminase (ALT), acid phosphatase
(ACP), alkaline phosphatase (ALP) and lactate
dehydrogenase (LDH) in treated group compared
to control (Sivan et al., 2024). Vali et al. (2020)
observed decreased albumin and globulin level
and escalated serum glucose, cortisol, alanine
transaminase, and alkaline phosphatase level in
AgNPs treated Cyprinus carpio. The study also
reported enhanced catalase activity in the treated
fish serum.

Hypophthalmichthys molitrix when treated with
AgNPs, showed significantly higher activities of
serum alanine transaminase (ALT), aspartate
transaminase, lactate dehydrogenase, white
blood cells, acetylcholinesterase and catalase
(Younas et al., 2022). Sivan et al. (2024) reported
increased serum aspartate transaminase, alanine
transaminase, acid phosphatase, alkaline
phosphatase and lactate dehydrogenase activity
in Oreochromis mossambicus treated with
AgNPs, while antioxidant enzymes superoxide
dismutase, catalase and glutathione peroxidase
activity decreased.

FACTORS AFFECTING THE TOXICITY OF
SILVER NANOPARTICLES

The cytotoxicity of AgNPs is influenced by
several factors, including nanoparticle size,
concentration, surface chemistry, and cell type.
The size of AgNPs has a significant impact on
their toxicity, influencing cell viability, lactate
dehydrogenase activity, and reactive oxygen
species generation. Smaller silver nanoparticles
often exhibit higher toxicity compared to larger
ones, likely due to factors like increased surface
area and reactivity, which affects their cellular
uptake and interaction (Menichettietal., 2023).

It is well-known that surface area, volume ratio,
and surface reactivity all are significantly

influenced by particle size. As particles become
smaller, the surface area to volume ratio increases
drastically, resulting in larger proportion of
surface atoms and higher potential for surface
interactions and reactivity (Joudeh and Linke,
2022). Properties like sedimentation velocity,
mass diffusivity, attachment efficiency, and
deposition velocity are significantly influenced
by particle size. Smaller particles generally have
higher diffusivity and lower sedimentation rates,
while larger particles exhibit the opposite.
The size dependency influences nanoparticles
interactions with biological and solid surfaces,
affecting their deposition, attachment, and
overall behaviour (Yusuf et al., 2024). Zhanget al.
(2020) reported the differences between
neurotoxic effects of 20nm and 70nm AgNPs. The
results revealed that 20 nm and 70 nm AgNPs
significantly reduce neuronal cell viability, with
the smaller AgNPs exerting stronger toxic effects
than the larger ones. Another study by Zhang et
al. (2018) reported that the smaller size (10 nm)
AgNPs caused higher toxicity in Azotobacter
vinelandii than the larger (50 nm) ones.

The surface chemistry of AgNPs significantly
impacts their interaction with cells and can be
modified through surface coatings to enhance
their properties. AgNPs in conjugation with
specific molecules can enable novel functions,
improve colloidal stability, and influence the way
they interact with cells (Umapathi et al., 2022).
Surface coatings on AgNPs influence their shape,
aggregation and dissolution rate, which in turn
affect their toxicity (Fahmy et al., 2019). AgNPs
induced cytotoxicity is influenced by several
factors like coating materials, size, aggregation,
and dissolution ratio, leading to variations in the
mechanisms and extent of toxicity. The core
mechanisms of AgNPs influenced toxicity
involves reactive oxygen species generation,
depletion of antioxidant defence systems, and
mitochondrial dysfunction, all of which can be
altered by surface coating (Nogaetal., 2023).

Polyvinylpyrrolidone-coated AgNPs are more
stable than citrate-coated counterparts in OECD
recommended media, especially in presence of
chloride. Citrate coatings initially help stabilize
silver nanoparticles and reduce their toxicity, but
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they are destroyed upon drying the nanoparticles
into a powder, leaving it in a pristine state that
still causes significant cytotoxicity upon re-
dissolution. In contrast, polyvinylpyrrolidone -
coated AgNPs retain good stability and have
negligible toxic effects on HaCaT keratinocytes
when the dried powder is re-dissolved (Tejamaya
et al., 2012). However, previous studies reported
that uncoated AgNPs significantly decrease cell
viability in a time-and dose-dependent manner,
and coating is used to provide protection against
cytotoxicity (Akteretal., 2018).

CONCLUSION

Widespread applications of AgNPs have resulted
in its unintentional release into the environment.
Silver nanoparticles in different environmental
sectors inevitably find its way into aquatic
environment. Entering into aquatic environment
they undergo various trans-formations, which
alter its toxicity. Toxicity of AgNPs also depends
on its particle size or surface chemistry. It is very
important to understand the toxic effects of
AgNPs in fishes, because it outlines the potential
harmful effect of AgNPs in vertebrates. Also, fish
is an important source of food for humans. So,
harmful effect of silver nanoparticles in fishes
can pose direct serious threat to human beings.
Proper characterization of AgNPs is needed to
define its size, surface morphology etc., which in
turn will help in determining its toxic effect.
Furthermore, extensive research is needed to earn
mechanistic insights into the toxicity of AgNPs.
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